Picture of the author
Picture of the author
SGK CD Toán 6»Phân Số Và Số Thập Phân»Cách cộng phân số & tính chất cơ bản của...

Cách cộng phân số & tính chất cơ bản của phép cộng phân số

Phép cộng phân số là một trong những phép toán cơ bản và rất quan trọng. Ta sẽ đi tìm hiểu về các tính chất cơ bản của phép cộng phân số ở bài viết dưới đây.

Xem thêm

Ta đã biết cách thực hiện phép cộng hai phân số cùng mẫu mà tử và mẫu là số nguyên. Ngoài ra, ta cũng đã biết cách thực hiện phép cộng hai phân số khác mẫu số. Vậy làm thế nào để thực hiện cách cộng phân số và tính toán chúng một cách nhanh chóng? Ta sẽ đi tìm hiểu về các tính chất cơ bản của phép cộng phân số. Bài viết sau đây sẽ làm rõ hơn vấn đề này.


1. Tính chất cơ bản của phép cộng phân số

Tương tự phép cộng số tự nhiên và số nguyên, phép cộng phân số cũng có các tính chất cơ bản sau:

  • Tính chất giao hoán: ;
  • Tính chất kết hợp: ;
  • Tính chất cộng với số : .

2. Các dạng bài áp dụng phép cộng phân số

2.1. Dạng 1: Cách tính cộng nhiều phân số

*Phương pháp giải:

Dựa vào tính chất kết hợp của phép cộng phân số, ta mở rộng phép tính cộng hai phân số thành phép tính cộng từ ba phân số trở lên.

Ví dụ 1. Thực hiện tính tổng các phân số sau: .

Lời giải

Áp dụng tính chất kết hợp của phép cộng phân số, ta có

.

2.2. Dạng 2: Áp dụng các tính chất cơ bản của phép cộng phân số để tính nhanh tổng của nhiều phân số

*Phương pháp giải:

Để tính toán một cách nhanh chóng tổng của nhiều phân số đã cho, trước tiên, ta sẽ quan sát đặc điểm của từng số hạng để tìm ra điểm chung giữa chúng, rồi ta áp dụng tính chất giao hoán và tính chất kết hợp của phép cộng để tính toán một cách nhanh chóng.

Ví dụ 2. Tính nhanh giá trị của biểu thức sau: .

Lời giải

Áp dụng tính chất cơ bản của phép cộng phân số để tính nhanh, ta có

     (tính chất giao hoán)

                          (tính chất kết hợp)

                          .

3. Các bài tập vận dụng tính chất phép cộng phân số

Câu 1. Thực hiện tính tổng các phân số sau:

a) ;

b) .

ĐÁP ÁN

a) Áp dụng tính chất kết hợp của phép cộng phân số, ta có

.

b) Áp dụng tính chất kết hợp của phép cộng phân số, ta có

.

  

Câu 2. Phép cộng phân số có những tính chất nào sau đây?

  1. Tính chất giao hoán và tính chất kết hợp
  2. Tính chất kết hợp và tính chất cộng với số 0
  3. Tính chất cộng với số 0 và tính chất giao hoán
  4. Tính chất giao hoán, tính chất kết hợp và tính chất cộng với số 0
ĐÁP ÁN

Phép cộng phân số có các tính chất cơ bản sau:

+ Tính chất giao hoán: Khi ta thực hiện đổi chỗ các phân số trong một biểu thức thì giá trị của biểu thức đó không thay đổi;

+ Tính chất kết hợp: Khi ta cộng một tổng hai phân số với phân số thứ ba thì ta có thể thực hiện cộng phân số thứ nhất với tổng của hai phân số còn lại, khi đó giá trị của biểu thức không thay đổi;

+ Tính chất cộng với số : Khi ta cộng một phân số với số không thì tổng của chúng chính là phân số đó hoặc ngược lại.

  Chọn đáp án D

Câu 3. Tính nhanh giá trị của các biểu thức sau đây:

a) ;

b) .

ĐÁP ÁN

a) Áp dụng tính chất cơ bản của phép cộng phân số để tính nhanh, ta có

     (tính chất giao hoán)

                           (tính chất kết hợp)

                        

                          .

b) Áp dụng tính chất cơ bản của phép cộng phân số để tính nhanh, ta có

          (tính chất giao hoán)

                                            (tính chất kết hợp)

                                           

                                           .

Câu 4. Trong một cuộc thi chạy cấp trường, 10 phút đầu tiên bạn An chạy được quãng đường, 10 phút tiếp theo bạn An chạy được quãng đường, 10 phút tiếp theo nữa bạn An chạy được quãng đường. Hỏi sau 30 phút đầu, bạn An chạy được bao nhiêu phần quãng đường.

ĐÁP ÁN

Sau 30 phút đầu, bạn An chạy được số quãng đường là:

+ + = + + = .

Vậy trong 30 phút đầu, bạn An chạy được quãng đường.

Câu 5. Hai vòi nước cùng chảy vào một bể. Nếu vòi thứ nhất chảy thì phải mất 6 giờ mới chảy đầy một bể, nếu vòi thứ hai chảy thì phải mất 8 giờ mới chảy đầy một bể. Trong 1 giờ, mỗi vòi chảy được bao nhiêu phần bể? Nếu hai vòi cùng chảy thì mỗi giờ cả hai vòi chảy được bao nhiêu phần bể?

ĐÁP ÁN

Trong 1 giờ thì:

Vòi thứ nhất chảy được bể.

Vời thứ hai chảy được bể.

Nếu hai vòi cùng chảy thì mỗi giờ cả hai vòi chảy được số phần bể là:

+ = + = (bể).

Câu 6. Một đội gồm 2 người công nhân cùng làm một công việc. Nếu người thứ nhất làm thì phải mất 7 giờ mới hoàn thành công việc, nếu người thứ hai làm thì phải mất 9 giờ mới hoàn thành công việc. Nếu hai người cùng làm thì mỗi giờ cả hai người làm được bao nhiêu phần công việc?

ĐÁP ÁN

Trong 1 giờ thì:

Người thứ nhất làm được công việc.

Người thứ hai làm được công việc.

Nếu hai người cùng làm thì mỗi giờ cả hai người làm được số phần công việc là:

+ = + = (công việc).

Câu 7. Hãy chọn câu trả lời đúng trong các câu dưới đây:

Thực hiện phép cộng hai phân số ta làm như sau :

a) Cộng tử số với nhau và cộng mẫu số với nhau.

b) Nhân mẫu số của phân với 8, nhân mẫu số của phân số với 7 rồi cộng hai tử lại với nhau.

c) Nhân cả tử số và mẫu số của phân số với 8, nhân cả tử số và mẫu sô của phân số với 7 rồi cộng hai tử số mới của hai phân số đó với nhau, giữ nguyên mẫu số chung.

d) Nhân cả tử số và mẫu của phân số với 8, nhân cả tử số và mẫu số của phân số với 7 rồi cộng hai tử số mới của hai phân số đó với nhau và cộng hai mẫu số mới của hai phân số đó với nhau.

ĐÁP ÁN

Dựa và quy tắc cộng hai phân số khác mẫu số, ta được câu trả lời đúng là câu c).  

Câu 8. Chứng minh rằng tồng của các phân số sau đây lớn hơn :

+ + . . . + + .

ĐÁP ÁN

Ta có > ; > ; . . . ; > ; > .

Vì tổng đã cho có 10 số hạng, nên ta có

+ + . . .  + + > + +  . . .  + + = = .

Từ đó suy ra + + . . . + + > .

Vậy tổng của các phân số đã cho lớn hơn .

Phép cộng phân số là một kiến thức rất quan trọng, đi liền với nó là các tính chất cơ bản. Hy vọng bài viết trên sẽ giúp các em nắm rõ hơn về các tính chất cơ bản của phép cộng phân số. Qua đó, các em sẽ vận dụng để làm các bài tập.


Chịu trách nhiệm nội dung: GV Nguyễn Thị Trang

Tác giả: Hoài Nguyễn

Cách so sánh hai phân số cùng mẫu số và các bài tập vận dụng
Số đối là gì? Cách tìm số đối của phân số