Ứng dụng AI vào phòng chống thiên tai trượt lở đất ở các tỉnh miền núi phía Bắc

VOH - Bộ Khoa học và Công nghệ vừa phê duyệt thực hiện đề tài "Tích hợp trí tuệ nhân tạo và các công nghệ giám sát trái đất trong nghiên cứu tai biến trượt lở đất ở vùng núi phía Bắc Việt Nam”.

Theo báo cáo Điều tra, đánh giá và phân vùng cảnh báo nguy cơ trượt lở đất đá ở các vùng miền núi Việt Nam, 4 tỉnh có nguy cơ trượt lở đất cao nhất khu vực phía Bắc là Điện Biện, Lào Cai, Sơn La và Yên Bái. Trong đó, tỉnh Điện Biên (673 điểm trượt); Lào Cai (534 điểm trượt). Đặc biệt, Yên Bái và Sơn La là 2 tỉnh có trên 1.000 điểm trượt.

Với sự phát triển mạnh mẽ của công nghệ quan sát trái đất như: hệ thống vệ tinh, công nghệ không gian, không ảnh… hỗ trợ tích cực cho hoạt động nghiên cứu và dự báo vùng nguy cơ trượt lở đất. Đặc biệt trong việc kiểm kê hiện trạng trượt lở, thành lập bản đồ phân vùng dự báo nguy cơ trượt lở đất, phân tích nguy cơ trượt lở đất, quản lý trượt lở và cảnh báo sớm, giúp quản lý và giảm thiểu thiệt hại do tai biến trượt lở đất gây ra.

Nhóm nghiên cứu thuộc Trường Đại học Tài nguyên và Môi trường Hà Nội đã đề xuất và được Bộ KH&CN phê duyệt thực hiện đề tài “Tích hợp trí tuệ nhân tạo và các công nghệ giám sát trái đất trong nghiên cứu tai biến trượt lở đất ở vùng núi phía Bắc Việt Nam”.

Đề tài hướng đến mục tiêu xây dựng mô hình trí tuệ nhân tạo nâng cao độ tin cậy trong nhận diện, giám sát tai biến trượt lở đất, với sự hợp tác của Trung tâm GEOlab (Đại học Polimi - Ý) - Trung tâm nghiên cứu mạnh có nhiều chuyên gia trong các lĩnh vực trắc địa, địa chất, môi trường, kiến trúc và kỹ thuật xây dựng, KH&CN hàng không vũ trụ, địa tin học…

Ứng dụng AI vào phòng chống thiên tai trượt lở đất ở các tỉnh miền núi phía Bắc 1
Bản đồ phân vùng dự báo nguy cơ trượt lở đất - Nguồn: TCKHCN

Để giám sát và nhận diện sớm nguy cơ trượt lở đất, nhóm nghiên cứu đã sử dụng phương pháp CNN (Mạng nơ ron tích chập) và phương pháp PSInSAR tập trung thu nhận những điểm tán xạ mạnh, ổn định từ các địa vật. Các điểm tán xạ liên tục được thu nhận, cung cấp các giá trị pha nhất quán trong khoảng thời gian thu nhận. Các pha của các cặp ảnh ổn định theo thời gian và không thể hiện sự suy giảm, cho phép quan sát và theo dõi lâu dài sự dịch chuyển.

Nhóm nghiên cứu sử dụng thiết bị UAV để chụp ảnh các tuyến quốc lộ trên địa bàn từ xã Kim Nọi đến xã Lao Chải, huyện Mù Cang Chải và xã An Bình đến xã Lâm Giang, huyện Văn Yên; kết hợp với phương pháp thống kê để tìm ngưỡng mưa kích hoạt trượt lở cho khu vực nghiên cứu. Các khu vực có nguy cơ trượt lở đất, đá sẽ hiển thị màu sắc, hình dạng, kích thước và nguy cơ. Phương pháp này có độ chính xác cao hơn các phương pháp truyền thống.

Từ các phương pháp về công nghệ trên, nhóm nghiên cứu đã xây dựng thành công hệ thống cảnh báo trượt lở đất tại khu vực huyện Văn Yên và Mù Cang Chải ở tỷ lệ bản đồ 1:50.000. Đặc biệt, hệ thống cảnh báo này đã tích hợp mô hình trí tuệ nhân tạo với dữ liệu viễn thám, dữ liệu mưa từ các trạm. Hệ thống cảnh báo được chia làm 4 cấp độ: 1) ít nguy cơ; 2) nguy cơ trung bình; 3) nguy cơ cao; 4) nguy cơ rất cao.

Hệ thống cảnh báo trượt lở đất của nhóm nghiên cứu vừa đưa ra các cấp độ cảnh báo, vừa đề xuất các giải pháp kỹ thuật như chống nguy cơ trượt lở, tránh tác động gây áp lực lên sườn dốc và những phương án di dời khi có điều kiện bất thường về mưa lũ.

Có thể nói, thành công của đề tài vừa mang ý nghĩa quan trọng về khoa học và công nghệ, vừa có ý nghĩa về kinh tế - xã hội.