Picture of the author
Picture of the author
SGK CTST Toán 7»Tam Giác»Bài 8: Tính Chất Ba Đường Cao Của Tam Gi...

Bài 8: Tính Chất Ba Đường Cao Của Tam Giác

Lý thuyết bài tính chất ba đường cao của tam giác môn toán 7 bộ sách giáo khoa chân trời sáng tạo. Nay chúng ta sẽ cùng nhau tìm hiểu lý thuyết và bài tập minh họa một cách đầy đủ, dễ hiểu.

Xem thêm

1. Đường cao của tam giác

* Đường cao của tam giác là đoạn thẳng kẻ từ đỉnh của tam giác và vuông góc với đường thẳng chứa cạnh đối diện .

Vd: AH là đường cao của ∆ABC nhọn

bai-8-tinh-chat-ba-duong-cao-cua-tam-giac-01

Vd: BH là đường cao của ∆ABC tù

bai-8-tinh-chat-ba-duong-cao-cua-tam-giac-02

Thực hành 1 trang 77 SGK Toán lớp 7 Tập 2 - CTST

Vẽ 3 đường cao AH, BK, CE của tam giác ABC nhọn

bai-8-tinh-chat-ba-duong-cao-cua-tam-giac-03

Vận dụng 1 trang 77 SGK Toán lớp 7 Tập 2 - CTST

Vẽ đường cao xuất phát từ đỉnh B của tam giác vuông ABC (Hình 2a).

Vẽ đường cao xuất phát từ đỉnh F của tam giác tù DEF (Hình 2b).

bai-8-tinh-chat-ba-duong-cao-cua-tam-giac-04

Trong hình a:

 tại A ( ) Nên BA là đường cao của tam giác ABC

Ta có hình vẽ:

bai-8-tinh-chat-ba-duong-cao-cua-tam-giac-05

Trong hình b:

Từ F kẻ   tại K ( DE  kéo dài ) Nên FK là đường cao của tam giác DEF

Ta có hình vẽ:

bai-8-tinh-chat-ba-duong-cao-cua-tam-giac-06

2. Tính chất ba đường cao của tam giác

*Trong một tam giác ba đường cao cắt nhau ( đồng qui ) tại một điểm. Điểm đó gọi là trực tâm của tam giác.

bai-8-tinh-chat-ba-duong-cao-cua-tam-giac-07

Cho ∆ABC vẽ AH, BD, CE là 3 đường cao cắt nhau tại H. C/m H là trực tâm của ∆ABC

Xét ∆ABC, ta có:

AK là đường cao (AH ┴ BC)

BD là đường cao  (BD ┴ AC)

AK cắt BD tại H (gt)

=> H là trực tâm của ∆ABC.

Chú ý: Vì 3 đường cao của tam giác cắt nhau tại trực tâm nên khi muốn xác định trực tâm ta chỉ cần tìm giao điểm của 2 đường cao là đủ ( chắc chắn đường còn lại cũng đi

qua giao điểm này ).

Trong tam giác nhọn trực tâm nằm trong tam giác như hình 5a

Trong tam giác vuông trực tâm trùng với đỉnh vuông như hình 5b

Trong tam giác tù trực tâm nằm ngoài tam giác như hình 5c

bai-8-tinh-chat-ba-duong-cao-cua-tam-giac-08

Thực hành 2 trang 78 SGK Toán lớp 7 Tập 2 - CTST

Cho tam giác LMN có hai đường cao LP và MQ cắt nhau tại S (Hình 6). Chứng minh rằng NS vuông góc với ML.

bai-8-tinh-chat-ba-duong-cao-cua-tam-giac-09

GIẢI

Xét ∆MNL, ta có:

2 đường cao LP và MQ cắt nhau tại S ( gt )

=> S là trực tâm của ∆MNL

=> NS là một phần đường cao thứ 3 của ∆MNL

=> NS ┴ ML

Vận dụng 2 trang 78 SGK Toán lớp 7 Tập 2 - CTST

Cho tam giác ABC có ba đường cao AD, BE, CF đồng quy tại trực tâm H. Tìm trực tâm của các tam giác HBC, HAB, HAC.

GIẢI

Ta có hình vẽ:

bai-8-tinh-chat-ba-duong-cao-cua-tam-giac-10

Xét ∆HBC, ta có:

BF là đường cao (BF┴ CF, CF là đường cao )

HD là đường cao  (HD ┴ BC, AD là đường cao )

BF cắt HD tại A

=> A là trực tâm của ∆HBC.

Xét ∆HAB, ta có:

AE là đường cao (AE┴ BE, BE là đường cao )

HF là đường cao  (HF ┴ AB, CF là đường cao )

AE cắt HF tại C

=> C là trực tâm của ∆HAB.

Xét ∆HAC, ta có:

AF là đường cao (AF┴ CF, CF là đường cao )

HE là đường cao  (HE ┴ AC, BE là đường cao )

AF cắt HE tại B

=> B là trực tâm của ∆HAC.


Biên soạn: Cô Nguyễn Thị Hiền

SĐT: 0972 965 589 (bạn đọc thắc mắc liên hệ)

Đơn vị: Trung Tâm Đức Trí - 0286 6540419

Địa chỉ: 26/5 đường số 4, KP 3, P. Bình Hưng Hòa A, Q. Bình Tân, TP. HCM

Fanpage: https://www.fb.com/ttductri

Tác giả: Nguyễn Thị Hiền

Bài 7: Tính Chất Ba Đường Trung Tuyến Của Tam Giác
Bài 9: Tính Chất Ba Đường Phân Giác Của Tam Giác