Table of Contents
Ở chương trình Toán lớp 9 các em sẽ được làm quen với các phép tính có chứa căn bậc hai, căn bậc ba. Vậy làm thế nào để rút gọn các biểu thức chứa căn bậc hai? Để có thể rút gọn biểu thức chứa căn bậc hai ta phải sử dụng các phép biến đổi nào? Bài viết này sẽ giúp các em nắm vững kiến thức về căn bậc hai, tìm hiểu về các phép biến đổi và phương pháp giải các dạng bài toán rút gọn biểu thức có chứa căn bậc hai cùng lời giải chi tiết, dễ hiểu.
I. Căn bậc hai
Căn bậc hai số học của một số a ≥ 0 là một số x sao cho bình phương của nó bằng a.
Nghĩa là, với a ≥ 0 ta có:
Căn bậc hai số học của a kí hiệu là
Lưu ý: Số 0 có một căn bậc hai duy nhất là 0.
Số âm không có căn bậc hai.
Ví dụ. Ta có:
» Xem thêm: Căn bậc 2 là gì? Đâu là cách tính căn bậc 2 chuẩn nhất?
II. Các công thức thường dùng để rút gọn biểu thức chứa căn bậc hai
+ Với biểu thức A bất kỳ, ta có
+ Với biểu thức A bất kỳ và biểu thức B ≥ 0,ta có
+ Ngoài ra, để rút gọn các căn bậc hai ta còn sử dụng các hằng đẳng thức. Các hằng đẳng thức thường được sử dụng trong dạng toán này là:
(A+B)2 = A2 + 2AB + B2
(A-B)2 = A2 - 2AB + B2
A2 - B2 = (A-B)(A+B).
III. Các dạng toán về rút gọn biểu thức chứa căn bậc hai lớp 9
1. Dạng 1: Áp dụng các công thức biến đổi để rút gọn biểu thức chứa căn bậc hai đơn giản
*Phương pháp giải. Để rút gọn biểu thức chứa căn bậc hai của một số thực dương ta sẽ đi tính các căn bậc hai có trong biểu thức và thu gọn chúng. Để tính các căn bậc hai chúng ta thường áp dụng công thức
Ví dụ 1. Rút gọn các biểu thức sau:
a)
b)
c)
Giải
2. Dạng 2: Sử dụng hằng đẳng thức để rút gọn biểu thức chứa căn bậc hai
+ Nếu biểu thức chứa căn bậc đã có dạng
+ Đối với những biểu thức có dạng
Đầu tiên, chúng ta sẽ phân tích m = a2 + b2 và
Khi đó thay vào biểu thức ban đầu ta có:
Ví dụ 2. Rút gọn các biểu thức sau:
a)
b)
c)
Giải.
3. Dạng 3: Chứng minh các biểu thức chứa căn bậc hai bằng nhau
*Phương pháp giải. Để chứng minh các biểu thức chứa căn bậc hai bằng nhau, ta sử dụng các phép biến đổi và rút gọn từng biểu thức. Sau đó chúng ta so sánh các biểu thức sau khi thu gọn được để đưa ra kết luận. Có những bài toán chúng ta chỉ cần rút gọn một biểu thức phức tạp và chứng minh nó bằng với biểu thức còn lại.
Ví dụ 3. Chứng minh rằng:
Giải.
Ở bài này ta thấy biểu thức ở vế trái khá phức tạp. Chính vì thế ta sẽ rút gọn biểu thức ở vế trái.
Ta có:
Sau khi rút gọn ta thấy biểu thức ở vế trái có giá trị bằng 8 (đúng bằng giá trị ở vế phải).
Vậy
IV. Bài tập vận dụng liên quan đến rút gọn biểu thức chứa căn bậc hai
1. Bài tập trắc nghiệm
Bài 1. Chọn câu trả lời đúng. Trong các phát biểu sau, phát biểu nào đúng:
A. Với một biểu thức A bất kỳ, ta luôn có
B. Với một biểu thức A bất kỳ, ta luôn có
C. Với một biểu thức A ≥ 0, ta có:
D. Với một biểu thức A < 0, ta có:
ĐÁP ÁN
Chọn đáp án C.
Vì
Bài 2. Chọn câu trả lời đúng. Viết biểu thức
A.
B.
C.
D.
ĐÁP ÁN
Chọn đáp án D.
Ta có
Bài 3. Chọn câu trả lời đúng. Rút gọn biểu thức
A. M = 18
B. M = 20
C. M = 32
D.
ĐÁP ÁN
Chọn đáp án A.
Ta có:
Bài 4. Chọn câu trả lời đúng. Trong các biểu thức sau:
A. Biểu thức A và C có giá trị bằng nhau.
B. Biểu thức A và M có giá trị bằng nhau.
C. Cả bốn biểu thức trên đều có giá trị bằng nhau.
D. Cả bốn biểu thức trên không có biểu thức nào bằng nhau.
ĐÁP ÁN
Chọn đáp án B.
Ta có:
Vì biểu thức A và biểu thức M sau khi rút gọn đều bằng
Vậy biểu thức A và biểu thức M có giá trị bằng nhau.
2. Bài tập tự luận
Bài 1. Rút gọn biểu thức
ĐÁP ÁN
Ta có:
Bài 2. Cho
ĐÁP ÁN
Ta có:
Bài 3. Chứng minh biểu thức
ĐÁP ÁN
Ta có:
Biểu thức K sau khi rút gọn có giá trị bằng 1. Vậy biểu thức K nhận giá trị nguyên.
Như vậy, bài viết trên đã tổng hợp các kiến thức liên quan đến căn bậc hai và cách rút gọn biểu thức lớp 9 từ đơn giản đến phức tạp cùng với lời giải chi tiết, dễ hiểu. Hy vọng rằng qua bài viết này các em sẽ nắm vững lý thuyết và học thuộc các công thức để có thể áp dụng vào giải các bài toán liên quan đến rút gọn biểu thức chứa căn bậc hai một cách nhanh và chính xác nhất. Chúc các em học tốt!
Chịu trách nhiệm nội dung: GV Nguyễn Thị Trang